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Highlights
We introduce the multiplicative latent force model
• A compromise between mechanistic and data

driven approaches
• Providing controllable model geometry
• At the expense of tractable inference
To solve we introduce an approximation method
• Completing the model using a series expansion of

the solution
• Exploiting the resulting conditional

independence

Hybrid Modelling

Bayesian modelling of dynamic systems must often at-
tempt to balance physical models with the appeal of the
data driven paradigm. This can be problematic when
a realistic model is hard to motivate, and yet data is
sparse relative to the system complexity.

Mechanistic

Data driven

The linear latent force model [1] exists in this intersec-
tion by combining simple linear dynamics with a flexible
additive Gaussian process (GP) force

ẋ(t) = Ax(t) + Sg(t)
in an attempt to construct a practical class of hybrid
mechanistic models of dynamic systems. This system
is easily solved and the trajectories are given by
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We observe that the state is a linear transformation of
the latent force and therefore leads to a tractable joint
Gaussian distribution - as we consider richer models this
feature is lost.

Multiplicative Latent Forces

We extend the latent force model to allow for multiplica-
tive interactions between the latent forces and states
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Simple linear flow

Multiplicative
GP modulation

This combines the flexibility of GP methods with the
possibility to embed prior geometric knowledge, but in
general it is no longer possible to form a simple expres-
sion for the state as a transformation of the latent force.

Neumann Series Method

We introduce an approximation method using the trun-
cated series expansion of the solution obtained after M
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is a matrix-valued GP.

This operator is
• Linear in the state, conditional on the latent

forces
• Linear in the latent forces, conditional on the

state

Starting then from an initial GP ‘guess’, conditional on
the latent force, we form successive Gaussian additive
error updates
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It is possible to marginalise out the states up to the
truncation order, but the resulting covariance matrix
is a degree 2M polynomial in the latent forces making
carrying out inference for the latent forces challenging.

Conditional Inference

Instead of marginalising out the successive approxima-
tions we can retain them to form the (conditional) com-
plete data likelihood
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This model is equivalent to a linear Gaussian dynamic
system leading to tractable inference using Kalman fil-
ter methods. Furthermore, the latent forces have a
Gaussian distribution after conditioning on the com-
plete set of states and data so that the completed model
is well suited to Gibbs and variational methods.
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(c) Interior state update

Simulated Dynamic System on S

2

Choice of A
r

allows strong topological constraints. If
we chose elements of the Lie algebra so(3) then we can
simulate dynamic systems on the sphere S

2 œ R3.

EM Estimation

MAP estimates of the latent forces using data simulated
from the model
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where A

i

is the infinitesimal rotation matrix around the
i-coordinate axis. Estimation was carried out using the
EM algorithm and the estimates converge quickly with
respect to the expansion order.

Discussion
We have proposed an extention to the latent force
model framework that uses multiplicative inter-
actions to combine flexible modelling of dynamic
systems with prior geometric constraints.

By using a series expansion approximation we
are able to motivate a complete data model that
allows for tractable conditional inference.

In future work we consider extension the to
the case where we attempt to learn the underlying
manifold using a foliation of the latent space.
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